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a b s t r a c t 

Complex network analysis is a hot topic in the data mining area which aims to reveal the hidden infor- 

mation behind a network. As an important tool in complex network analysis, community detection tries 

to perform a network clustering operation to find the community structure, which can be formulated as 

an optimization problem. In the past few decades, various of community detection algorithms have been 

designed to address this challenging problem. Although many algorithms are feasible to detect the net- 

work partitions, most of them only get suboptimal solutions or have poor stability. The state transition 

algorithm (STA) is a novel intelligent paradigm for global optimization, and it exhibits powerful global 

search ability in various complex optimization problems. Thus, in this paper, a novel modularity-based 

discrete state transition algorithm (MDSTA) is proposed to obtain more optimal and stable solutions. 

Moreover, based on the heuristic information of the network, vertex substitute transformation operator 

and community substitute transformation operator are proposed for global search. Then, each initialized 

individual evolves through these two substitute operations. Next, an elite population that contains indi- 

viduals with high fitness values is selected from these evolved individuals. Finally, a two-way crossover 

operation among the elite population is conducted for local search. The framework of MDSTA is pretty 

simple and easy to implement. Several state-of-art community detection algorithms are used to compare 

with MDSTA both on artificial networks and real-world networks. The experimental results demonstrate 

that MDSTA is effective and stable for community detection in networks. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays, networks such as social networks, traffic networks,

iological networks, and computer networks are everywhere, and

arious networks constitute the world we live in. For network sci-

nce researchers, networks can be represented as graphs contain

odes and edges. Nodes are the entities in a system, while an edge

ndicates there is an interaction between two entities [1] . Among

ifferent f eatures of networks, community structure has received

idespread attention. Community structure, i.e. the division of a

etwork into groups of nodes having dense intra-connections, and

parse inter-connections [2] , is an important characteristic of net-

orks. Furthermore, community detection or network clustering

hich can discover community structure in the network is mean-

ngful for us to reveal the information behind the networks. 
∗ Corresponding author. 
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To solve the community detection problem, various types of

ethods have been proposed and developed, including block ap-

roximation model [3] , label propagation model [4–6] , and modu-

arity maximization model [2,7–9] , information-theoretical model

10–12] . Moreover, some new methods like dynamic cluster for-

ation game [13] , community detection by finding network’s cen-

ral nodes [14] are proposed in recent years. Of all the algo-

ithms, the modularity maximization model is the most popular

ne which transforms community detection problem into an op-

imization problem. Since modularity was put forward by New-

an [8] , many evolutionary algorithms are widely used in com-

unity detection due to their powerful search capabilities. Gong

t al. [15] proposed a multi-objective discrete particle swarm al-

orithm based on modularity for community detection. In [16] ,

 novel clonal selection algorithm is used for finding network

ommunities. Song et al. [17] proposed a community detection

lgorithm based on bat algorithm. In [18] , they introduced a

ulti-agent genetic algorithm for community detection in com-

lex networks. Guerrero et al. [19] used genetic algorithms for

https://doi.org/10.1016/j.neucom.2019.01.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.01.009&domain=pdf
mailto:yfxie@csu.edu.cn
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Fig. 1. Graphical illustration of community detection in a simple network 
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adaptive network clustering by optimizing modularity. However,

most modularity-based algorithms can not obtain stable results

and often get into local optima, which prompts us to find an al-

gorithm to get better and more stable solutions. 

In this paper, a new intelligent global optimization paradigm

called state transition algorithm(STA) [20] is introduced to solve

this problem. STA optimizes a problem by different kinds of state

transformation operations. In STA, a solution to a specific optimiza-

tion problem is considered as a state, and the procedure of updat-

ing a current solution is considered as state transition. STA gen-

erates candidate solutions from the current solution by a certain

state transformation operator, and then it selects a solution from

the candidate set as the new current solution. This process is re-

peated for several times by using different kinds of state transfor-

mation operators until the specified termination criteria are sat-

isfied. In continuous optimization problems, STA shows fantastic

performance due to its effective global search ability [21–28] . In

[29] , a discrete STA was proposed to solve several unconstrained

integer optimization problems including traveling salesman prob-

lem, boolean integer programming and discrete value selection. Its

excellent global search ability was validated by comparing with

other state-of-art algorithms. Since the community detection prob-

lem is also an unconstrained integer optimization problem, we

extend the discrete STA and propose a novel modularity-based dis-

crete state transition algorithm (MDSTA) to find the optimal or ap-

proximate optimal solution for community detection problem. Ex-

periments on both artificial networks and real-world networks are

conducted by the proposed MDSTA. The experimental results show

that the proposed method is more useful and effective than other

modularity-based algorithms. 

The key contributions of the proposed method include: 

1) The traditional methods based on evolutionary computation di-

rectly perform crossover and mutation operations in the initial

population, which is often blind and ineffective, while MDSTA

optimizes each initial individual separately, and then it selects

individuals with high fitness value as the elite population for

local search, which is more reasonable. 

2) Two kinds of state transformation operators including vertex

substitute operator and community substitute operator are de-

signed based on the priori knowledge of networks. 

3) To avoid getting trapped into local optimal solutions, a new

local search strategy using the two-way crossover in the elite

population is proposed. 

The structure of this paper is organized as follows: Section 2

presents the description of community detection problem.

Section 3 shows the proposed discrete STA in detail, then two

kinds of state transformation operators and a new local search

method are illustrated. Experimental analysis are shown in Section

4 . Finally, Section 5 concludes the paper. 

2. Problem formulation 

We consider a basic unweighted and undirected network which

does not has overlapping communities. Thus, a network is denoted

as G = (V, E) , V means vertices, and E represents edges which con-

nect two vertices. In order to describe the topological structure of

a network, the adjacency matrix A has been introduced. The ele-

ments of A can be written as A ij , where A ij = 1 if nodes i and j are

linked and A ij = 0, otherwise. 

In order to find communities in a network, the definition of

the community should be given. A network with N communities

can be denoted as � = { �(1) , �(2) , . . . , �(N) } , where �( i ) is com-

munity i . Typically, for a network, the community refers to a col-

lection of closely connected nodes, and the connections between

different communities are sparse [30] . Furthermore, community
etection for a simple network can be illustrated in Fig. 1 . In this

etwork, many possible divisions can be performed and two kinds

f divisions are shown in the figure. As we can imagine, for com-

lex networks, the divisions are more diverse. 

Community detection aims to find an optimal division of a net-

ork, naturally the detection of community structure in a net-

ork can be formulated as an optimization problem. If �i indicates

he i th kind of partitions of the network, � = { �1 , . . . , �i , . . . , �n }
eans n kinds of feasible network partitions. In order to discover

he optimal partition �∗, the community detection problem can be

ormulated as an optimization problem 

 (�∗) = min F (�) , (1)

here �∗ ∈ �, and F is the fitness function that can measure the

uality of the obtained community structure [31] . 

. Modularity-based discrete STA for community detection 

In the discrete STA, state and state transition are two main ele-

ents, where a state stands for a solution and the state transition

eans the transformation operation aiming to generate a new so-

ution. The basic framework of generation of a solution in STA can

e described as 

x k +1 = A k (x k ) � B k (u k ) 
y k +1 = f (x k +1 ) 

, (2)

here x k and x k +1 are the current state and the next state, respec-

ively; A k and B k are the specific state transformation operators; u k 
tands for a function of current state and historical states; � is a

ind of operation which aims to connect two states; f is the fitness

unction, and y k +1 is the fitness value at x k +1 . 

.1. Fitness function 

It is important for the community detection problem to find a

uitable criterion function. For the choice of objective function, the

ost popular one is the modularity function, which was proposed

nd developed by Newman [8] . The modularity of a network G(V,

) often denoted as Q and it can be written as 

 = 

1 

2 M 

∑ 

(
A i j −

K i K j 

2 M 

)
δ(i, j) , (3)

here δ is the kronecker function which equals 1 when node i and

ode j are in the same community, otherwise δ = 0 ; A is the adja-

ency matrix; M means the number of edges in the graph; K i and

 j represent the respective degree of nodes i and j . In general, the

arger the value of Q , the better the performance of the community

etection algorithm. 
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Fig. 2. State representations of the network partitions in Fig. 1 . 
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Fig. 3. Community structure of the Karate network after initialization. 
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.2. State representation and initialization 

Since the modularity is used as the fitness function, and other

ariables are already given by the linkage of the network, we only

eed to know the value of δ( i, j ) which depends on the commu-

ity structure of the network. Thus, a state or a solution need to

e encoded to presents the corresponding community structure of

 network. The proposed MDSTA uses the label-based representa-

ion as the encoding scheme. To a certain partition of a complex

etwork G ( V, E ) with n nodes, a state is encoded as 

 = (x 1 , x 2 , . . . , x n ) (4) 

here x i stands for the community label, and x i = k means that

ode i belongs to the k th community; node i and node j come from

he same community when x i = x j . For the two kinds of network

artitions shown in Fig. 1 , their correspongding state representa-

ion can be illustrated in Fig. 2 . 

The initialization of solutions is an important part for an algo-

ithm. If the state is generated by assigning random values to each

ode, the network will be too disordered to optimize. So, in order

o reduce the time complexity and give an appropriate partition

f the network, a method based on label propagation proposed by

ong et al. [32] was introduced. In this method, the label of each

ode is updated according to its neighbors which can be written

s 

axLabel = argmax 
k 

� j∈ �(i ) δ(l( j) , k ) , (5) 

here �( i ) represents the neighbor set of node i; l ( j ) means the

abel of node j , and k ∈ N + ; δ( m, n ) yields one if m equals n , zero

therwise. 

The pseudo code of the algorithm can be seen in Algorithm 1 .

lgorithm 1 State initialization with label propagation based

ethod. 

nput: network adjacency matrix: A; iterations 

utput: initialized state: Best 

1: Best = 1 : n 

2: for iter = 1 : iterations do 

3: sequence ← randperm (n ) 

4: for k = 1 : nodes.number do 

5: i ← sequence (k ) 

6: if �(i ) .size ≥ 1 then 

7: MaxLabel ← Eq. (5) 

8: Best(i ) ← random (MaxLabel) 

9: end if 

10: end for 

11: end for 

uring the initialization process, the algorithm first initializes each

ode in the network as a unique label. For each iteration, a la-

el propagation operation will be performed for every vertex in

 random order. If a label value (denoted as v ) in the neighbors

f node i appears most frequently, the label of node i will be

hanged to v ; if the number of different labels in the neighbors of

ode i appears the same, then we randomly select one of them as

he label of node i . After the label propagation, closely connected
odes are quickly divided into the same community. The iterations

n Algorithm 1 is set as 5 when n > 10 0 0, and 1 otherwise. Fig. 3

isplays the community structure of the Karate network after the

nitialization step. 

.3. State transformation operators 

State transformation operators are the crucial components of

TA. In our previous study, four kinds of operators including swap

perator, shift operator, symmetry operator and substitute opera-

or are designed to solve different kinds of unconstrained integer

ptimization problems [33] . Owing to the fact that specific opti-

ization problems have their own characteristics, these specially

esigned operators perform not so good in the community detec-

ion problem. Thus, two operators called vertex substitute opera-

or and community substitute operator are designed based on the

abel-based representation method and the characteristics of com-

lex networks. 

.3.1. Vertex substitute transformation 

Substitute transformation operation aims to modify the values

f some positions in a state to generate new states. Therefore, it

ould increase the diversity of solutions and the possibility of find-

ng better solutions. In MDSTA, the process from a state to generate

 new state can be written as 

 k +1 = A 

sub 
k ( m d ) X k (6) 

here, A 

sub 
k 

∈ R n ×n stands for a substitute transformation matrix;

 k and X k +1 are the current state and the generated state, respec-

ively; m d equals n means that n positions in the state will be

hanged at most. In the vertex substitute transformation m d = 1

nd it represents that only the value in a certain position will be

ubstituted. 

Although substitute transformation should possess a certain de-

ree of randomness to generate a variety of solutions, completely

andom substitute transformation could hardly produce promising

tates and it will increase time complexity. So, the vertex substi-

ute transformation operator is designed according to the linkage

f the network. The main idea of the operator is to substitute the

abel of a node according to its neighbors’ label. However, not all

he nodes are suitable for this operation, such as node 4 in Fig. 3 ,

or the reason that it has the same label value with all the neigh-

or nodes. On this account, a definition of potential node is given

s bellow. 
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Fig. 4. Illustration of vertex substitute transformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Illustration of community substitute transformation. 
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Definition 1 ( Potential node ): For a given network partition, if the

label of node i is not completely the same with its all neighbors,

then we call node i as potential node . 

The pseudo code of vertex substitute transformation is shown

in Algorithm 2 . In the Algorithm, a solution (state) and its mod-

Algorithm 2 Vertex substitute transformation. 

Input: A; Current_Best; Current_fBest; SE 

Output: Next_Best; Next_fBest 

potential _ nodes ← find potential nodes based on Current_Best 

2: for j = 1:SE do 

t emp ← C urrent _ Best 

4: k ← random (potential _ nodes ) 

l abel . �(r)(l abel . �(k ) == temp(k )) ← [] 

6: temp(k ) ← random (l abel . �(r)) 

State ( j, :) ← temp 

8: end for 

[ N ext _ Best, N ext _ f Best] ← select the state with the highest

modularity value 

10: if Next _ f Best < Current _ f Best then 

Next _ Best ← Current _ Best 

12: Next _ f Best ← Current _ f Best 

end if 

ularity value are denoted as Best and fBest , respectively. This op-

erator will conduct SE times vertex substitute operations to the

Current_Best after finding the potential nodes based on the cur-

rent network partition. In each substitute operation, a node k is

randomly selected from all the potential nodes, and the neighbor

nodes of node k are denoted as �( k ). Then, the label of k is re-

placed with the label of a randomly selected neighbor node which

is different from k ’s label value. After SE times substitute opera-

tions, the operator generates SE new states. The Current_Best and

SE generated states constitute the candidate solution set. Finally,

the operator returns the state with largest modularity value in the

candidate solution set. 

Fig. 4 gives a graphical illustration of vertex substitute transfor-

mation based on the community structure in Fig. 3 . In this illus-

tration, the potential node 5 is selected. Then, the label of node 5

is substituted by its neighbor’s label. 

3.3.2. Community substitute transformation 

We also design a substitute operator with m d > 1 which is

called community substitute operator, and it will perform substi-

tute operation to a randomly selected community. A lot of small-

scale communities generated after the initialization process, in-

cluding some communities that have tight connection. Therefore,

community substitute transformation is designed to merge these

tight connection communities into the same community to opti-

mize the partition of the networks. Similar with the vertex substi-

tute transformation, we use the label information of the neighbor
ommunities to determine the label of the selected community.

ere, the definition of neighbor community is given as follows: 

Definition 2 ( Neighbor community ): Given a partition � =
 �(1) , . . . , �(i ) , . . . , �(N) } of the network G , and the number of

ommunities is N . For any community �( i ) ∈ �, as long as it has

ne node directly connected to the community �( k ) ∈ �, we define
( i ) as a neighbor community of community �( k ) . 

The whole procedure can be described in Algorithm 3 . As

lgorithm 3 Community substitute transformation. 

nput: A; Next_Best; Next_fBest; SE 

utput: New_Best; New_fBest 

potential _ nodes ← find potential nodes based on Next_Best 

for j = 1:SE do 

3: temp ← Next _ Best 

k ← random (potential _ nodes ) 

�(k ) ← the community of node k 

6: k _ potential _ nodes ← potential nodes in �(k ) 

l abel _ v al ue ← l abel . �(k _ potential _ nodes ) 

l abel _ v al ue (l abel _ v al ue == temp(k )) ← [] 

9: t emp(t emp = t emp(k )) ← random (l abel _ v al ue ) 

State ( j, :) ← temp 

end for 

12: [ N ew _ Best, N ew _ f Best] ← select the state with the highest

modularity value 

if N ew _ f Best < N ext _ f Best then 

N ew _ Best ← N ext _ Best 

15: N ew _ f Best ← N ext _ f Best 

end if 

hown in Algorithm 3 , the potential nodes are used to search for

he neighbor communities. The only difference between the vertex

ubstitute transformation and the community substitute transfor-

ation lies on the method for generating candidate solutions. The

ommunity substitute transformation conducts SE times of substi-

ute operations to a state ( Next_Best ). In each procedure, we ran-

omly choose a node k which is a potential node in the current

etwork partition, and select its community �( k ) . Then, the label

f �( k ) is changed to the label of a randomly selected neighbor

ommunity, and the lable of the selected neighbor community is

ifferent from �( k ) ’s label. In the end, SE new states and Next_Best

onstitute the candidate solutions. 

Fig. 5 gives the result of a kind of community substitute trans-

ormation. In this illustration, the potential node 10 and its cor-

esponding community are selected. Then, the label of the select

ommunity is substituted by its neighbor community’s label. 

.3.3. Two-way crossover for local search 

Two-way crossover is a crossover operation which was pro-

osed by Gong et al. [32] . An example of two-way crossover is
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Fig. 6. Illustration of two-way crossover operation. 

Fig. 7. Illustration of the Initialization and Evolution step. 

g  

1  

w  

b  

t  

a  

t  

s  

t

 

a  

h  

a  

w  

i  

t  

a  

w  

o  

s  

Fig. 8. Experimental results in the artificial networks. 
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iven in Fig. 6 . We will only introduce the steps that how next state

 is generated from current state 1 , since it is changed in the same

ay from current state 2 to next state 2 . Firstly, the vertex 3 (la-

eled as pink) is randomly selected in current state 2 . In this state,

he community whose label is pink includes vertexes 1, 2, 3, 4, 5

nd 6. Then these vertexes in current 1 will be chosen for substi-

ute operation. Finally, the labels of these nodes in current 1 are

ubstituted by pink (the label of vertex 3 in current state 2 ), and

hus next state 1 is generated. 

In traditional methods, the two-way crossover is usually used

s a genetic operator in the early period of an algorithm to en-

ance the global search ability. However, in the early stages of the

lgorithm, the solutions are not good enough to adopt the two-

ay crossover operation to product more promising solutions, and

t often brings extra computational cost. While at the later stage of

he algorithm, many solutions approach the global optimal solution

nd they are generally seen as potential solutions. Hence, the two-

ay crossover operation is introduced for local search after using

f the state transformation operators in our method. Experiments

how that this local search strategy can help MDSTA to find the
ptimal solution and thus improve the performance in the com-

unity detection problem. 

.4. States-updating strategies 

An optimization algorithm with good performance should have

wo key properties. One is that the algorithm can generate good

andidate solutions, and the other is that it has appropriate selec-

ion strategies to select promising candidate solutions. In MDSTA,

tate transformation operators are designed to generate new can-

idate solutions which are often better than the current solution,

nd thus the first property is satisfied. 

Meanwhile, there are two kinds of selection strategies for

tates-updating in our algorithm. For one thing, according to

lgorithms 2 and 3 , the modularity value will not be worse af-

er each state transformation operation. Actually, it uses the greedy

earch strategy. For another, according to Algorithm 4 , every ini-

ial state ( Current _ Best0 ) will repeatedly performs vertex substi-

ute transformation and community substitute transformation un-

il the operators could not get a state with larger modularity value

or a certain ( stagnate _ number) times. If the new state ( New _ Best)

hich is updated by the two substitute transformation operators

an generate larger fitness value than the state which is updated

n the last iteration, the new solution will be saved to constitute

n optimal solution set ( Best _ History ). Next, we select the solu-

ions from the optimal solution set whose fitness values are in the

op n ( elite _ popsize ) as the elite population. Finally, two individuals

 Best1 and Best2 ) which are randomly selected from the elite pop-

lation will conduct the two-way crossover operation for several

 MaxIter � SE ) times. 

.5. Algorithm framework and complexity analysis 

The framework of the proposed MDSTA for community detec-

ion is given in Algorithm 4 . The entire algorithm is divided into

hree main steps: Initialization and Evolution, Generate Elite Popu-

ation, and Local Search. Besides, Fig. 7 gives a graphical illustration

f one iteration in the Initialization and Evolution step to better

nderstand the process. 

For a network with n nodes and m edges, according to the

lgorithm outline, two substitute operators play a vital role and

hey need the most computational time. According to Algorithm 2 ,

he main computational cost is to find the potential nodes. The

lgorithm determines whether the node is a potential node by
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Algorithm 4 The pseudo code of MDSTA. 

Input: network adjacency matrix A ; search enforcement SE; stagnate_number; MaxIter; popsize ; elite _ popsize ; 

Output: the network partition finded by MDSTA 

Initialization and Evolution : 

2: Best _ History ← [] , f Best _ History ← [] 

for i = 1 : popsize do 

4: Initial state: Current_Best; fitness value: Current_fBest; stagnate ← 0 

while stagnate < stagnate _ number do 

6: [ Next_Best , Next_fBest] ← V ertex _ subst it ute ( A , Current_Best , Current_fBest , SE) 

[ New_Best , New_fBest] ← Community _ substitute ( A , Next_Best , Next_fBest , SE) 

8: if New_fBest > Current_fBest then 

stagnate ← 0 

10: Best_History ← [ Best _ History ; New _ Best] 

fBest_History ← [ f Best _ History ; New _ f Best] 

12: else 

stagnate ← stagnate + 1 

14: end if 

Current_Best← New_Best , Current_fBest← New_fBest 

16: end while 

end for 

18: Generate Elite Population : 

if length ( f Best _ History ) > elite _ popsize then 

20: [ fBest_History ,order] ← sort( f Best _ History ,’descend’) 

Best _ History ← Best _ History (order, :) 

22: Best _ History ← Best _ History (1: elite _ popsize , :) 

f Best _ History ← f Best _ History (1: elite _ popsize , :) 

24: end if 

Local Search : 

26: for i = 1 : MaxIter do 

Randomly select Best1 and Best2 from the elite population 

28: [New_Best,New_fBest] ← twoway _ crossov er(A,Best1,Best2,SE) 

Best_History ← [ Best _ History ; New _ Best] 

30: fBest_History ← [ f Best _ History ; New _ f Best] 

end for 

32: [ fBest ,position] ← max( f Best _ History ) 

Best← Best _ History (position, :) 

Fig. 9. Original College Football network. 

Fig. 10. Community structure of Karate network. 
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omparing its label with all its neighbors. For node i , it re-

uires k i comparisons. Therefore, it need �k i comparisons for

ll n nodes. Since �k i = 2 m , the vertex substitute transforma-

ion requires O ( m ) comparisons. Similarly, based on Algorithm 3 ,

he time complexity of community substitute transformation is

 ( m ). Besides, the complexity of state initialization is O ( n ). In

ummary, the Initialization and Evolution step need O ( popsize ·
n + iterations · 2 m )) comparisons; as m is larger than n in gen-

ral, so it can be simply written as O ( popsize · iterations · m ).

he Generate Elite Population step and the Local Search step

eed O ( MaxIter � n ) comparisons. In a word, the computational

omplexity of MDSTA is O ( m ). 
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Table 1 

Network parameters. 

Real-world network Community Node Edge 

Karate 2 34 78 

Dolphins 2 62 159 

Polbooks 3 105 441 

Football 12 115 613 

Jazz Unknown 198 2742 

E-mail Unknown 1133 5451 

Netscience Unknown 1589 2742 

Power grid Unknown 4941 6594 

Fig. 11. Community structure of Dolphins network. 
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. Experiment analysis 

In order to evaluate the performance of MDSTA in finding suit-

ble community structure in networks, several experiments in both

rtificial networks and real-world networks are conducted. In ad-

ition, we compare MDSTA with some state-of-art methods in-

luding: Louvain [34] , GN [35] , LPA [4] , Danon [36] , GA-Net [37] ,

OGA-Net [38] . The parameter settings for each algorithm are

ased on their respective papers. As for MDSTA, its parameters will

e shown in Section 4.4 . The experiments are conducted in MAT-

AB 2017b Windows10 based on a personal computer with Intel

5-6500 @3.2 GHz CPU and 8 GB RAM. 

.1. Performance measure 

Similar with clustering, the results of community detection

eed to be measured and quantified to determine the performance

f different algorithms. There are two main indexes which could

valuate the results of network partitions, including the modularity

denoted as Q ) and the normalized mutual information (denoted as

MI ). 

For the modularity index, we consider a partition with higher

alue of Q that is superior than other partitions and it does not

eed to know the real community structure of the network. The

etail description of modularity is given in Eq. (3) . Furthermore, a

odularity value greater than 0 indicates that community struc-

ure begins to emerge in the network, and when the modularity

alue is higher than 0.3, we think that the effect of community

ivision is good. 

As for the normalized mutual information index, the calculation

ormula is given as follows 

MI = 

−2 

∑ N A 
i =1 

∑ N B 
j=1 

N ij log 
N ij n 

N i N j ∑ N A 
i =1 

N i. log N i. 
n 

+ 

∑ N B 
j=1 

N . j log 
N . j 

n 

(7) 

here A ( B ) denotes the community partition which includes

 A ( N B ) communities in a network with n nodes. Community i in

he actual partition and community j in the real partition have N ij 

odes in common, and then N ij forms a matrix N . Meanwhile, N i. 

 N .j ) represent the sum of the i th row ( j th colum) of matrix N . 

The NMI index assesses the differences between the commu-

ity division detected by the algorithm and the real community
ivision of the network. A high NMI value reflects that the de-

ected community structure is very similar to the real community

tructure. Particularly, NMI(A,B) = 0 when A and B are completely

ifferent. If network partition A and B are exactly the same, then

MI(A,B) = 1. 

.2. Artificial networks 

We choose the extented Girvan–Newman benchmark network

o perform an artificial networks test which is one of the most

ommonly used analog data set in current community detection

esearch [39] . The extented GN network mainly includes the fol-

owing parameters: n represents the number of nodes; k repre-

ents the average degree of nodes in the network; k max represents

he maximum degree of the node; β represents the parameter of

ommunity size distribution; c max ( c min ) represents the number of

odes contained in the largest (smallest) community; μ is a mixed

arameter, indicating the probability of the node connecting with

he outside of the community, and the larger the value of μ, the

ore difficult the community detection will be. Network param-

ters are set to n = 128, k = 16, k max = 16, c min = 32, c max = 32, β= 1.

xperimental data including 11 different types of networks which

re generated by setting different μ parameters by increasing 0.05

rom 0 to 0.5. 

The extented GN network has a known real community struc-

ure, and the NMI indicator can be used to evaluate the quality of

ommunity partitions obtained by various algorithms. All the al-

orithms are conducted by 30 times and the average NMI values

re recorded in Fig. 8 . From the line chart, it can be seen that only

DSTA, GN and Louvain could detect the exactly real network par-

ition when μ = 0 . 4 . The community structure is rather complex

fter μ> 0.4, so it is very difficult to find the true division of the

etwork. However, MDSTA is still able to detect the community

tructure and it demonstrates the feasibility and effectiveness for

he community detection problem. 

.3. Real-world networks 

In this section, the performance of MDSTA is verified by ex-

eriments in eight real-word networks including Zackarys Karate

lub [40] , Bottlenose Dolphins [41] , American College Football [2] ,

rebs Political books [9] , Jazz Musicians [42] , Netscience [43] , E-

ail [44] , and Power grid [45] . Different from the artificial net-

orks, all nodes and edges in a real-word network have their own

ractical meanings. Here is an example of the practical meaning of

 real network: 

College Football network Newman created a complex social net-

ork based on the American college football League. The net-

ork contains 115 nodes and 616 edges, the original network can

e seen in Fig. 9 . The nodes in the network represent the foot-

all teams. The edge between the two nodes represents there is

 match between the two teams. The 115 participating college

eams are divided into 12 leagues. The process of the game is that

he teams within the league perform the first group match, and

hen the teams between the leagues. This shows that the num-

er of matches between teams within the league is more than

he number of matches between teams in different leagues. The

eague can be expressed as the community of the college football

etwork. 

The basic parameters of these networks are given in Table 1 .

urthermore, in order to visually see the actual effect of the algo-

ithm, illustrations are given including the real community struc-

ure and the community structure discovered by MDSTA both in

he Karate network and the Dolphins network in Figs. 10 and 11 .

ccording to the illustrations, the ground truth division divided

ore roughly than the community division which is detected by
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Table 2 

Experimental results for the networks with known ground truth. 

Network Algorithm MDSTA Louvain GN LPA Danon GA-Net MOGA-Net 

Karate Q best 0.4198 0.4188 0.4013 0.4020 0.4087 0.4198 0.4172 

Q mean 0.4198 0.4188 0.4013 0.3157 0.4062 0.4123 0.4121 

Q worst 0.4198 0.4188 0.4013 6.4051e-18 0.4033 0.3929 0.3872 

NMI mean 0.6873 0.5866 0.5603 0.6253 0.5389 0.6881 0.9580 

Dophins Q best 0.5285 0.5188 0.5194 0.5265 0.5136 0.5187 0.5227 

Q mean 0.5284 0.5188 0.5194 0.4850 0.5136 0.4677 0.4742 

Q worst 0.5276 0.5188 0.5194 0.3787 0.5136 0.4116 0.4110 

NMI mean 0.5872 0.5162 0.5542 0.6592 0.5743 0.4830 0.8236 

Polbooks Q best 0.5272 0.4986 0.5168 0.4986 0.5269 0.5223 0.5248 

Q mean 0.5272 0.4986 0.5168 0.4239 0.5250 0.5229 0.5057 

Q worst 0.5272 0.4986 0.5168 1.7874e-17 0.5237 0.4785 0.4725 

NMI mean 0.5603 0.5745 0.5585 0.4863 0.5429 0.5099 0.5637 

Football Q best 0.6046 0.6046 0.5996 0.6032 0.5773 0.5935 0.5477 

Q mean 0.6046 0.6046 0.5996 0.5812 0.5705 0.5307 0.4713 

Q worst 0.6044 0.6046 0.5996 0.5496 0.5580 0.2187 0.3770 

NMI mean 0.8892 0.8903 0.8735 0.8681 0.7534 0.7742 0.7231 

Fig. 12. Structure of College Football Network finding by MDSTA. 

Fig. 13. Structure of Polbooks Network finding by MDSTA. 
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our algorithm because smaller communities can be detected in our

method. 

In addition, Table 2 shows the experimental results by run-

ning independently 30 times for each algorithm. By analyzing the

data in the table, the modularity values obtained by LPA, Danon,
A-Net and MOGA-Net are unstable and often fall into local op-

imal. While, Louvain and GN get the same results in each net-

ork, but they couldn’t obtain the highest Q values. However, it

hould be highlight that MDSTA not only can get the highest mod-

larity values but also has a very stable performance among these

everal state-of-art algorithms. Therefore, the experimental results

recisely indicate that the proposed algorithm has powerful global

earch capabilities to solve this problem. 

As for Polbooks network and Football network, the community

tructure detected by MDSTA is not completely consistent with the

eal community division as exhibited in Figs. 12 and 13 . However,

ccording to the data presented in Table 2 , MDSTA is the most ef-

ective algorithm, because it can obtain the highest modularity val-

es and relative high NMI values. So, it can be verified that our

lgorithm can find a meaningful result. 

In the Jazz Musicians network, its real community structure is

ot given, so that we can only compute the modularity values and

ake a comparison. According to Table 3 , it can be noted that MD-

TA, Louvain and LPA can reach high modularity values, but the

erformance of MDSTA is more stable. The main reasons can be

ummarized as two points. On the one hand, modularity is directly

sed as the fitness function in our method. On the other hand, we

rst use the state transformation operators for individual evolution

o form an elite population, and then carry out group evolution

mong high quality individuals, and this strategy can fully utilize

he global and local search ability of the algorithm. 

Also, MDSTA is tested on three large-scale real-word networks,

ncluding the E-mail network, the Netscience network and the

ower grid network. The number of nodes and edges of these net-

orks are much larger than the networks studied above. Like the

azz Musicians network, the real network partitions of the three

etworks are unknown. Thus, we obtain the modularity values of

ach algorithm for a comparison. Table 3 gives the experimental

esults. 

The E-mail network is a complex network which indicates the

mail communications of a university. From Table 3 , LPA algorithm

ets poor performance, and the modularity values are too small

nd unstable. As for the two evolutionary algorithms: GA-Net and

OGA-Net, although they can obtain relatively stable network par-

itions, the modularity values are not good enough than other algo-

ithms. Danon, Louvain and MDSTA can get good and stable modu-

arity values among these algorithms. Meanwhile, MDSTA gets the

ighest modularity value of 0.5785 which can show the good per-

ormance of our algorithm. 

The Netscience network studied the collaborate relationship

mong scientists. It contains 1589 nodes and 2742 edges. This
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Table 3 

Experimental results for the networks with unknown ground truth. 

Network Algorithm MDSTA Louvain GN LPA Danon GA-Net MOGA-Net 

Jazz Q best 0.4451 0.4431 0.4051 0.4428 0.4401 0.3926 0.3880 

Q mean 0.4 4 49 0.4431 0.4051 0.4353 0.4391 0.2971 0.3056 

Q worst 0.4 4 45 0.4431 0.4051 0.2816 0.4387 0.2248 0.2459 

E-mail Q best 0.5785 0.5412 0.5323 0.2361 0.5472 0.3626 0.2485 

Q mean 0.5666 0.5412 0.5323 0.0081 0.5424 0.3194 0.2076 

Q worst 0.5464 0.5412 0.5323 1.1298e-16 0.5364 0.2341 0.2032 

Netscience Q best 0.9599 0.9543 0.9579 0.9255 0.9588 0.9211 0.9125 

Q mean 0.9597 0.9543 0.9579 0.9197 0.9585 0.8396 0.9101 

Q worst 0.9592 0.9543 0.9579 0.9114 0.9583 0.8393 0.8990 

Power grid Q best 0.9376 0.9335 0.9330 0.7532 0.9366 0.6763 0.7087 

Q mean 0.9345 0.9335 0.9330 0.7471 0.9354 0.6691 0.7026 

Q worst 0.9340 0.9335 0.9330 0.7408 0.9339 0.6607 0.6968 

Table 4 

Experimental results for different parameter configurations in three real-world networks. 

Network SE Popsize 

10 20 30 40 50 

Dophins 10 0.5275 ± 7.3783e–4 0.5280 ± 6.5612e–4 0.5282 ± 4.8042e–4 0.5282 ± 5.2077e–4 0.5281 ± 4.7582e–4 

20 0.5278 ± 7.0640e–4 0.5282 ± 4.5793e–4 0.5282 ± 3.9937e–4 0.5282 ± 5.0587e–4 0.5282 ± 4.1388e–4 

30 0.5281 ± 6.6716e–4 0.5284 ± 4.0817e–4 0.5284 ± 3.8419e–4 0.5281 ± 4.6851e–4 0.5283 ± 3.7014e–4 

40 0.5280 ± 6.2089e–4 0.5284 ± 2.4145e–4 0.5283 ± 3.8380e–4 0.5284 ± 3.3897e–4 0.5283 ± 3.6304e–4 

50 0.5281 ± 4.3347e–4 0.5283 ± 3.7014e–4 0.5283 ± 3.7014e–4 0.5284 ± 3.0952e–4 0.5283 ± 3.5581e–4 

Football 10 0.6041 ± 6.1384e–4 0.6044 ± 2.8263e–4 0.6044 ± 9.6788e–5 0.6045 ± 7.4653e–05 0.6045 ± 7.0788e–5 

20 0.6043 ± 4.0137e–4 0.6045 ± 8.1860e–5 0.6045 ± 6.7380e–5 0.6045 ± 5.6859e–05 0.6045 ± 5.2593e–5 

30 0.6045 ± 9.4583e–5 0.6046 ± 4.5321e–5 0.6046 ± 2.9638e–5 0.6046 ± 3.5791e–05 0.6046 ± 2.0616e–17 

40 0.6045 ± 6.0025e–5 0.6046 ± 2.9638e–5 0.6046 ± 2.9638e–5 0.6046 ± 2.9638e–05 0.6046 ± 0 

50 0.6045 ± 5.2593e–5 0.6046 ± 2.9638e–5 0.6046 ± 2.9156e–17 0.6046 ± 2.0616e–17 0.6046 ± 2.9156e–17 

Jazz 10 0.4 4 40 ± 5.8660e–4 0.4 4 41 ± 3.5917e–4 0.4 4 42 ± 5.0299e–4 0.4 4 45 ± 2.6939e–4 0.4 4 4 4 ± 2.4627e–4 

20 0.4 4 45 ± 2.9234e–4 0.4 4 46 ± 1.9396e–4 0.4 4 47 ± 2.0828e–4 0.4 4 48 ± 1.3454e–4 0.4 4 48 ± 1.5392e–4 

30 0.4 4 46 ± 2.6855e–4 0.4 4 47 ± 1.7286e–4 0.4 4 48 ± 1.6435e–4 0.4 4 48 ± 1.5652e–4 0.4 4 48 ± 1.8246e–4 

40 0.4 4 48 ± 2.2437e–4 0.4 4 48 ± 1.9897e–4 0.4 4 48 ± 1.6270e–4 0.4 4 49 ± 2.3620e–4 0.4 4 48 ± 2.2084e–4 

50 0.4 4 47 ± 2.0623e–4 0.4 4 48 ± 2.1589e–4 0.4 4 48 ± 2.0628e–4 0.4 4 48 ± 2.4621e–4 0.4 4 48 ± 2.5130e–4 

network MaxIter elite _ popsize 

without local search 10 20 30 40 50 

Dophins 10 0.5281 ± 5.7061e–4 0.5281 ± 4.6712e–4 0.5280 ± 6.4156e–4 0.5281 ± 5.0468e–4 0.5280 ± 5.5991e–4 

20 0.5283 ± 3.8197e–4 0.5283 ± 3.7014e–4 0.5282 ± 4.7833e–4 0.5281 ± 4.8611e–4 0.5279 ± 5.5723e–4 

30 0.5280 ± 6.1123e–4 0.5282 ± 5.2498e–4 0.5282 ± 5.2469e–4 0.5282 ± 4.1929e–4 0.5282 ± 4.2720e–4 

0.5278 ± 6.0440e-04 40 0.5280 ± 4.7906e–4 0.5284 ± 3.0950e–4 0.5283 ± 3.8380e–4 0.5283 ± 3.6304e–4 0.5281 ± 5.2972e–4 

50 0.5282 ± 5.5839e–4 0.5284 ± 3.3897e–4 0.5283 ± 4.3726e–4 0.5282 ± 4.2965e–4 0.5281 ± 4.6979e–4 

Football 10 0.6045 ± 6.1903e–5 0.6045 ± 6.4699e–5 0.6045 ± 7.0788e–5 0.6045 ± 5.2593e–5 0.6045 ± 8.4882e–5 

20 0.6046 ± 3.5791e–5 0.6046 ± 3.8588e–5 0.6045 ± 5.8464e–5 0.6045 ± 5.4397e–5 0.6046 ± 5.0725e–5 

30 0.6046 ± 4.1183e −5 0.6046 ± 4.7476e −5 0.6046 ± 3.5791e −5 0.6046 ± 2.5751e −5 0.6045 ± 6.1903e −5 

0.6043 ± 3.8822e-04 40 0.6046 ± 3.8588e −5 0.6046 ± 2.9638e −5 0.6046 ± 2.5751e −5 0.6046 ± 3.5791e −5 0.6046 ± 4.7476e −5 

50 0.6046 ± 3.8588e −5 0.6046 ± 3.5791e −5 0.6046 ± 2.0616e −17 0.6046 ± 2.9156e −17 0.6046 ± 4.1183e −5 

Jazz 10 0.4 4 47 ± 2.2318e −4 0.4 4 47 ± 1.9726e −4 0.4 4 47 ± 2.5332e −4 0.4 4 46 ± 2.0325e −4 0.4 4 47 ± 2.4037e −4 

20 0.4 4 48 ± 2.1884e −4 0.4 4 47 ± 1.6565e −4 0.4 4 48 ± 1.9598e −4 0.4 4 47 ± 2.1427e −4 0.4 4 47 ± 1.9887e −4 

30 0.4 4 48 ± 2.1872e −4 0.4 4 48 ± 1.9632e −4 0.4 4 47 ± 1.9522e −4 0.4 4 48 ± 1.7521e −4 0.4 4 47 ± 1.9458e −4 

0.4 4 45 ± 1.9911e −04 40 0.4 4 48 ± 1.7669e −4 0.4 4 48 ± 1.8097e −4 0.4 4 47 ± 1.64 4 4e −4 0.4 4 48 ± 1.4206e −4 0.4 4 47 ± 1.9005e −4 

50 0.4 4 48 ± 2.0681e −4 0.4 4 48 ± 1.8706e −4 0.4 4 48 ± 1.5588e −4 0.4 4 48 ± 1.2942e −4 0.4 4 48 ± 2.0950e −4 

± denotes “mean ± standard deviation”. 
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etwork has an obvious community structure and all the algo-

ithms can get high modularity values. For MDSTA, it obtains

he highest modularity value of 0.9599. After 30 times experi-

ents, the mean modularity value of MDSTA is 0.9597, which

s almost the same with the highest value. According to the

xperimental results, MDSTA can find good network partitions

fficiently. 

The Power grid network was constructed based on the high-

oltage power grid in the US. The network is very large which

ontains 4941 nodes and 6594 edges. In this network, the mod-

larity values obtained by Louvain, GN, Danon and MDSTA are

retty high. What’s more, the best results (0.9376) and the worst

esult (0.9340) of MDSTA are all larger than other algorithms.

ased on the experimental results, it is clear that our algorithm

ossesses very competitive performance with other state-of-art

lgorithms. 
.4. Parameter analysis 

In the Initialization and Evolution step of Algorithm 4 , it in-

ludes three parameters: popsize, stagnate_number and SE. Popsize

eans the number of the population, while SE controls the search

trength of state transformation operators. From Algorithm 4 , it can

e noted that stagnate_number is used as the termination condi-

ion. If both state transformation operators can not get a state with

etter fitness value for stagnate_number times, the two substitute

ransformation operations will be terminated. In the proposed MD-

TA, stagnate_number is set as 10, which is empirically determined.

s for popsize and SE , Table 4 records the experimental results over

0 times independent experiments in three real networks. Gener-

lly, from Table 4 , we observe that with the values of SE and pop-

ize increased, the mean of modularity values becomes larger and

he stand deviation becomes smaller, which indicate good results.
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Moreover, by comparing the change rate of modularity values per

row and per column separately, it can be found that the impact of

SE on the experimental results is greater than that of popsize . The

main reason for this phenomenon is that SE controls the number of

candidate solutions in each state transformation operator which is

used for global search. In addition, small values of SE and popsize

cannot benefit the algorithm’s global exploration ability, whereas

large values will cost a good deal of time. Considering both the

global search ability and the computation time, SE and popsize are

set as 40 and 20, respectively. Particularly, popsize is set as 1 when

the number of network nodes is greater than 10 0 0 to avoid con-

suming too much time. 

In the local search procedure, two parameters are used to con-

trol the local exploitation ability which are denoted as MaxIter and

elite _ popsize . From the pseudo code of MDSTA in Algorithm 4 , the

elite _ popsize means the size of the elite population, while the Max-

Iter gives the iterations of local search. Based on the definitions

of these two parameters, the parameter comparison experiment

is conducted, and the statistical results can be found in Table. 4 .

Firstly, it can be noted that the modularity value becomes larger

after the local search procedure. So it can be concluded that the

strategy of local search used in our algorithm is efficient to gener-

ate more promising states, and then it gives a possibility for MD-

STA to jump out of the local optimal solution. Secondly, in general,

the greater SE , the better the algorithm, while the elite _ popsize

does not have an obvious impact to the performance of the algo-

rithm. On the one hand, small values of elite _ popsize will cause

a low diversity of solutions in the elite population. On the other

hand, large elite _ popsize values normally reduce the quality of the

population. Therefore, considering the above analysis and the ex-

perimental results, MaxIter is set as 40 and elite _ popsize is set as

20 in the proposed MDSTA. 

5. Conclusion 

In this paper, a new discrete state transition algorithm based

on the concept of modularity called MDSTA is designed for the

community detection problem. Different from other evolutionary

algorithms, state transition algorithm is a flexible algorithm that

we can design operators based on the specific problem. Thus,

according to the topology of the network, two kinds of opera-

tors named as vertex substitute operator and community substi-

tute operator are respectively proposed. Furthermore, in order to

avoid falling into the local optimal solution, we performed the

two-way crossover operation to the elite individuals which were

optimized by the two substitute operators. Finally, we compared

the proposed method with other six state-of-art community de-

tection algorithms by testing them both in the artificial and real-

world networks. The experimental results show that our algorithm

is very promising and effective to solve the community detection

problem. 
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